Gasoline engine downsizing is already established as a proven technology to reduce the carbon dioxide emissions of automotive fleets. Additionally, alternative fuels such as natural gas offer the potential to reduce significantly both tailpipe carbon dioxide emissions and other regulated exhaust gas emissions without compromising the driving performance and the driving range.

The fully optimised engine demonstrated significant measured improvements in peak thermal efficiency (+14%) and CO2 emissions (~50% at peak power) whilst maintaining the same outputs as the original gasoline engine (120 kW and 286 Nm).

- Vast experience in alternative fuel combustion processes
- Specific engine design considerations & knowledge
- Continuous advanced research activities
- Use of in-house baseline engine for back-to-back comparison
- Application of proven control systems for bio-fuel engines
- Full development of alternative fuelled engines & vehicles
- Understanding of relevant fuel storage issues
MAHLE CNG Demonstrator Vehicle

In comparison to a standard production gasoline engine (1.4 litre TSI) with similar power and torque outputs, the MAHLE CNG equipped demo vehicle has achieved a reduction in CO2 emissions from 154 g/km to 115 g/km based on the NEDC cycle. Even greater benefits were seen at higher loads and higher power outputs, making CNG highly relevant as a solution to deliver real-world fuel consumption and emissions benefits for end consumers and under the new RDE / WLTP test cycle conditions.

The MAHLE CNG demonstrator vehicle has clearly shown that cars equipped with an engine designed specifically to run on CNG can be both fun to drive and very efficient.

CNG optimised engine

<table>
<thead>
<tr>
<th>Engine layout:</th>
<th>3 cylinders in line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bore/stroke:</td>
<td>83.0 / 73.9 mm</td>
</tr>
<tr>
<td>Displacement:</td>
<td>1200 cm³</td>
</tr>
<tr>
<td>Compression ratio:</td>
<td>13.3:1</td>
</tr>
<tr>
<td>Fuel system:</td>
<td>CNG DI and Gasoline PFI</td>
</tr>
<tr>
<td>Nominal power :</td>
<td>120 kW</td>
</tr>
<tr>
<td>Nominal torque :</td>
<td>286 Nm (BMEP, 30 bar)</td>
</tr>
<tr>
<td>Peak cylinder pressure</td>
<td>180 bar</td>
</tr>
<tr>
<td>Turbocharger</td>
<td>VTG-TC</td>
</tr>
</tbody>
</table>

Contact Us:
Powertrain@mahle.com

MAHLE Powertrain GmbH
Einsteinring 5
85609 Aschheim, Germany
Tel. +49 89 962915-0

MAHLE Powertrain Ltd
13.210-877
Jundiai / São Paulo, Brazil
Tel. +55 11 4589-0400

MAHLE Automotive Technologies
No. 1299 Huan Cheng Bei Road, Fengpu Industrial Park
201 401 Shanghai, Fengxian District, China
Tel. +86 21 5136-0595